Quantum & AI

创建时间
Nov 24, 2024 09:40 AM
编辑日期
Last updated November 24, 2024
属性
标签
This content, based on the QAOA topic, will be updated regularly.

1. Different

AI for Quantum
Quantum for AI
目标
AI改进QC
QC改进AI
效果
量子硬软件和算法优化
加速AI训练和优化
方向
量子线路设计、噪声建模、误差改进
增强优化模型泛化能力,减少计算资源
问题
如何针对QC开发AI模型,需要选取什么信息,以构造适合的模型。模型是否通用。
在NISQ设备运行算法对结果与模拟结果有一定偏差。设计的量子算法能否实际应用。

1.1 AI for Quantum

💡
借助人工智能技术的优势去优化和改进量子计算的硬件、算法设计和应用等。
目标:
提升量子算法在真实量子硬件上的可实用性。
应用场景:
  • 量子线路:将所设计的量子线路(算法)利用AI进行优化,降低算法复杂度。部分任务可通过AI生成量子线路。
  • 量子硬件:借助AI优化在含噪量子计算机的门操作精度,降低误差等。还可用AI改进量子算法用于构建更多数量的逻辑量子比特。
  • 模拟量子系统:在经典计算机上模拟一定规模的量子系统,通过模拟噪声环境去研究量子算法的有效性。
研究领域:
  • 图神经网络GNN:
    • 量子物理关系建模:Kong, L., Feng, J., Liu, H., Tao, D., Chen, Y., & Zhang, M. (2024). Mag-gnn: Reinforcement learning boosted graph neural network. Advances in Neural Information Processing Systems36.
    • 量子架构(线路拓扑)搜索:He, Z., Zhang, X., Chen, C., Huang, Z., Zhou, Y., & Situ, H. (2023). A GNN-based predictor for quantum architecture search. Quantum Information Processing22(2), 128.
  • 强化学习:
    • 通用量子控制:Niu, M. Y., Boixo, S., Smelyanskiy, V. N., & Neven, H. (2019). Universal quantum control through deep reinforcement learning. npj Quantum Information5(1), 33.
    • Zhang, X. M., Wei, Z., Asad, R., Yang, X. C., & Wang, X. (2019). When does reinforcement learning stand out in quantum control? A comparative study on state preparation. npj Quantum Information5(1), 85.
  • 生成对抗网络GAN:
    • Borras, K., Chang, S. Y., Funcke, L., Grossi, M., Hartung, T., Jansen, K., ... & Vallecorsa, S. (2023, February). Impact of quantum noise on the training of quantum generative adversarial networks. In Journal of Physics: Conference Series (Vol. 2438, No. 1, p. 012093). IOP Publishing.
    • Kao, P. Y., Yang, Y. C., Chiang, W. Y., Hsiao, J. Y., Cao, Y., Aliper, A., ... & Lin, Y. C. (2023). Exploring the advantages of quantum generative adversarial networks in generative chemistry. Journal of Chemical Information and Modeling63(11), 3307-3318.

1.2 Quantum for AI

💡
借助量子计算的优势去加速或改进人工智能技术。
目标:
发挥量子优势去提升AI性能,使得能处理更复杂的问题。
应用场景:
  • 机器学习:大规模数据处理、优化传统ML模型。
  • 优化问题:组合优化等。
  • 量子神经网络:以量子为主的机器学习架构,或具有自动优化的全量子架构。
研究领域:
  • 变分量子算法如QAOA、VQA
  • 量子版本经典机器学习算法如QSVM
    • Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical review letters113(13), 130503.
    • Lloyd, S., & Weedbrook, C. (2018). Quantum generative adversarial learning. Physical review letters, 121(4), 040502.
  • 大规模数据:HHL线性方程求解,Grover搜索算法。
    • Duan, B., Yuan, J., Yu, C. H., Huang, J., & Hsieh, C. Y. (2020). A survey on HHL algorithm: From theory to application in quantum machine learning. Physics Letters A384(24), 126595.
    • Grassl, M., Langenberg, B., Roetteler, M., & Steinwandt, R. (2016, February). Applying Grover’s algorithm to AES: quantum resource estimates. In International Workshop on Post-Quantum Cryptography (pp. 29-43). Cham: Springer International Publishing.
    • Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., ... & Zoufal, C. (2024). Challenges and opportunities in quantum optimization. Nature Reviews Physics, 1-18.
    • Sankar, K., Scherer, A., Kako, S., Reifenstein, S., Ghadermarzy, N., Krayenhoff, W. B., ... & Yamamoto, Y. (2024). A benchmarking study of quantum algorithms for combinatorial optimization. npj Quantum Information10(1), 64.

2. QAOA & AI

Blekos, K., Brand, D., Ceschini, A., Chou, C. H., Li, R. H., Pandya, K., & Summer, A. (2024). A review on quantum approximate optimization algorithm and its variants. Physics Reports1068, 1-66.
 
 

3. QGNN

Ceschini, A., Mauro, F., De Falco, F., Sebastianelli, A., Verdone, A., Rosato, A., ... & Ullo, S. L. (2024). From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks. arXiv preprint arXiv:2408.06524.
 

4. Quantum Architecture Search

Quantum Architecture Search: A Survey